194 research outputs found

    Integration and Prototyping of a Pulsed RF Oscillator with an UWB Antenna for Low-Cost, Low-Power RTLS Applications

    Get PDF
    The goal of this paper is to present a compact low-cost and low-power prototype of a pulsed UltraWide Band (UWB) oscillator and an UWB elliptical dipole antenna integrated on the same Radio Frequency (RF) Printed Circuit Board (PCB) and its digital control board for Real Time Locating System (RTLS) applications. The design is compatible with IEEE 802.15.4 high rate pulse repetition UWB standard being able to work between 6 GHz and 8.5 GHz with 500 MHz bandwidth and with a pulse duration of 2 ns. The UWB system has been designed using the CST Microwave Studio transient Electro-Magnetic (EM) circuit co-simulation method. This method integrates the functional circuit simulation together with the full wave (EM) simulation of the PCB’s 3D model allowing fast parameter tuning. The PCB has been manufactured and the entire system has been assembled and measured. Simulated and measured results are in excellent agreement with respect to the radiation performances as well as the power consumption. A compact, very low-power and low-cost system has been designed and validated

    Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications

    Get PDF
    Radars have been widely deployed in cars in recent years, for advanced driving assistance systems. The most popular and studied modulated waveform for automotive radar is the frequencymodulated continuous wave (FMCW), due to FMCW radar technology’s ease of implementation and low power consumption. However, FMCW radars have several limitations, such as low interference resilience, range-Doppler coupling, limited maximum velocity with time-division multiplexing (TDM), and high-range sidelobes that reduce high-contrast resolution (HCR). These issues can be tackled by adopting other modulated waveforms. The most interesting modulated waveform for automotive radar, which has been the focus of research in recent years, is the phase-modulated continuous wave (PMCW): this modulated waveform has a better HCR, allows large maximum velocity, permits interference mitigation, thanks to codes orthogonality, and eases integration of communication and sensing. Despite the growing interest in PMCW technology, and while simulations have been extensively performed to analyze and compare its performance to FMCW, there are still only limited real-world measured data available for automotive applications. In this paper, the realization of a 1 Tx/1 Rx binary PMCW radar, assembled with connectorized modules and an FPGA, is presented. Its captured data were compared to the captured data of an off-the-shelf system-on-chip (SoC) FMCW radar. The radar processing firmware of both radars were fully developed and optimized for the tests. The measured performances in real-world conditions showed that PMCW radars manifest better behavior than FMCW radars, regarding the above-mentioned issues. Our analysis demonstrates that PMCW radars can be successfully adopted by future automotive radars

    A low-cost indoor real time locating system based on TDOA estimation of UWB pulse sequences

    Get PDF
    One of the most popular technologies adopted for indoor localization is ultrawideband impulse radio (IR-UWB). Due to its peculiar characteristics, it is able to overcome the multipath effect that severely reduces the capability of receivers (sensors) to estimate the position of transmitters (tags) in complex environments. In this article, we introduce a new low-cost real-time locating system (RTLS) that does not require time synchronization among sensors and uses a one-way communication scheme to reduce the cost and complexity of tags. The system is able to evaluate the position of a large number of tags by computing the time difference of arrival (TDOA) of UWB pulse sequences received by at least three sensors. In the presented system, the tags transmit sequences of 2-ns UWB pulses with a carrier frequency of 7.25 GHz. Each sensor processes the received sequences with a two-step correlation analysis performed first on a field-programmable gate array (FPGA) chip and successively on an on-board processor. The result of the analysis is the time of arrival (TOA) of the tag sequence at each sensor and the ID of the associated tag. The results are sent to a host PC implementing trilateration algorithm based on the TDOA computed among sensors. We will describe the characteristics of the custom hardware that has been designed for this project (tag and sensor) as well as the processing steps implemented that allowed us to achieve an optimum localization accuracy of 10 cm

    Design of an harmonic radar for the tracking of the Asian yellow-legged hornet

    Get PDF
    The yellow-legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On-field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low-cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow-legged Asian hornet

    Recent upgrades of the harmonic radar for the tracking of the Asian yellow-legged hornet

    Get PDF
    The yellow-legged Asian hornet is an invasive species of wasps, indigenous of the South-East Asia but quickly spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honey bee colonies and to humans as well, restraint measures are under investigation. Among them, the harmonic radar described in (Ecology and Evolution, 6, 2016 and 2170) already proved to be a quite effective way to follow the hornets to their nests; it is in fact capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. The aforementioned harmonic radar was upgraded after a period of intense experimentation; the capture of the hornets was enhanced as well, and other improvements were adopted in the mounting procedure of the transponder. Thanks to these upgrades, the flying capabilities of the hornets were not reduced and a huge collection of data was recorded. The main upgrade to the radar was the adoption of the vertical polarization of the radiated field, with the consequent redesign and manufacturing of the antennas and the different mounting of the transceiver on the insect. The installation of the radar on a telescopic tower drastically improved the maneuverability of the system and the capability to follow the insects’ preferential flying directions. Eventually, the system was able to produce much more continuous traces with a clear indication of the most probable position of the nest. The maximum range of detection was also increased to 150 m

    Efficient full wave code for the coupling of large multirow multijunction LH grills

    Get PDF
    The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill

    Development of pre-conceptual ITER-type ICRF antenna design for DEMO

    Get PDF
    ICRF antenna development for DEMO for the pre-conceptual phase is carried out by merging the existing knowledge about multi-strap ITER, JET and ASDEX Upgrade antennas. Many aspects are taken over and adapted to DEMO, including the mechanical design and RF performance optimization strategies. The minimization of ICRF-specific plasma-wall interactions is aimed at by optimizing the feeding power balance, a technique already proven in practice. Technological limits elaborated for the components of ITER ICRF system serve as a guideline in the current design process. Several distinctive aspects, like antenna mounting, integration with the neighbouring components or adaptation for neutron environment, are tackled individually for DEMO

    Hepatocyte-specific deletion of HIF2α prevents NASH-related liver carcinogenesis by decreasing cancer cell proliferation

    Get PDF
    Background & aims: Hypoxia and hypoxia-inducible factors (HIFs) are involved in chronic liver disease progression. We previously showed that hepatocyte HIF-2\u3b1 activation contributed significantly to nonalcoholic fatty liver disease progression in experimental animals and human patients. In this study, using an appropriate genetic murine model, we mechanistically investigated the involvement of hepatocyte HIF-2\u3b1 in experimental nonalcoholic steatohepatitis (NASH)-related carcinogenesis. Methods: The role of HIF-2\u3b1 was investigated by morphologic, cellular, and molecular biology approaches in the following: (1) mice carrying hepatocyte-specific deletion of HIF-2\u3b1 (HIF-2\u3b1-/- mice) undergoing a NASH-related protocol of hepatocarcinogenesis; (2) HepG2 cells stably transfected to overexpress HIF-2\u3b1; and (3) liver specimens from NASH patients with hepatocellular carcinoma. Results: Mice carrying hepatocyte-specific deletion of HIF-2\u3b1 (hHIF-2\u3b1-/-) showed a significant decrease in the volume and number of liver tumors compared with wild-type littermates. These effects did not involve HIF-1\u3b1 changes and were associated with a decrease of cell proliferation markers proliferating cell nuclear antigen and Ki67. In both human and rodent nonalcoholic fatty liver disease-related tumors, HIF-2\u3b1 levels were strictly associated with hepatocyte production of SerpinB3, a mediator previously shown to stimulate liver cancer cell proliferation through the Hippo/Yes-associated protein (YAP)/c-Myc pathway. Consistently, we observed positive correlations between the transcripts of HIF-2\u3b1, YAP, and c-Myc in individual hepatocellular carcinoma tumor masses, while HIF-2\u3b1 deletion down-modulated c-Myc and YAP expression without affecting extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and AKT-dependent signaling. In\ua0vitro data confirmed that HIF-2\u3b1 overexpression induced HepG2 cell proliferation through YAP-mediated mechanisms. Conclusions: These results indicate that the activation of HIF-2\u3b1 in hepatocytes has a critical role in liver carcinogenesis during NASH progression, suggesting that HIF-2\u3b1-blocking agents may serve as novel putative therapeutic tools

    Oncostatin M is overexpressed in NASH-related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis

    Get PDF
    : Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)-6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in NAFLD/NASH. The role of OSM was investigated in: a) selected cohorts of NAFLD/NASH HCC patients; b) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM; c) murine HCC xenografts; d) a murine NASH-related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis, and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial-to-mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth, but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH-related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM up-regulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro-carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. This article is protected by copyright. All rights reserved
    • …
    corecore